Existence of ground state solutions for an asymptotically 2-linear fractional Schrödinger–Poisson system
نویسندگان
چکیده
منابع مشابه
Ground State Solutions for an Asymptotically Linear Diffusion System
This article concerns the diffusion system ∂tu−∆xu + V (x)u = g(t, x, v), −∂tv −∆xv + V (x)v = f(t, x, u), where z = (u, v) : R × RN → R2, V (x) ∈ C(RN , R) is a general periodic function, g, f are periodic in t, x and asymptotically linear in u, v at infinity. We find a minimizing Cerami sequence of the energy functional outside the Nehari-Pankov manifold N and therefore obtain ground state so...
متن کاملExistence of ground state solutions for a class of nonlinear elliptic equations with fast increasing weight
This paper is devoted to get a ground state solution for a class of nonlinear elliptic equations with fast increasing weight. We apply the variational methods to prove the existence of ground state solution.
متن کاملAsymptotically Linear Solutions for Some Linear Fractional Differential Equations
and Applied Analysis 3 The first variant of differential operator was used in 13 to study the existence of solutions x t of nonlinear fractional differential equations that obey the restrictions x t −→ 1 when t −→ ∞, x′ ∈ ( L1 ∩ L∞ ) 0, ∞ ,R . 1.5 The second variant of differential operator, see 14 , was employed to prove that, for any real numbers x0, x1, the linear fractional differential equ...
متن کاملExistence of Positive Ground State Solutions for a Class of Asymptotically Periodic Schrödinger-poisson Systems
In this article, by using variational method, we study the existence of a positive ground state solution for the Schrödinger-Poisson system −∆u+ V (x)u+K(x)φu = f(x, u), x ∈ R, −∆φ = K(x)u, x ∈ R, where V (x),K(x) and f(x, u) are asymptotically periodic functions in x at infinity.
متن کاملExistence and multiplicity of positive solutions for a coupled system of perturbed nonlinear fractional differential equations
In this paper, we consider a coupled system of nonlinear fractional differential equations (FDEs), such that both equations have a particular perturbed terms. Using emph{Leray-Schauder} fixed point theorem, we investigate the existence and multiplicity of positive solutions for this system.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Boundary Value Problems
سال: 2020
ISSN: 1687-2770
DOI: 10.1186/s13661-019-01314-2